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Parameter Estimation and Extraction of Helicopter 
Signals Observed with a Wide-Band Interference 

Meir Feder, Member, IEEE 

Abstract-The acoustical signal generated by a helicopter, as 
well as many other signals, e.g., a voiced speech signal, can be 
described as periodic or almost periodic. When these signals 
are observed in the presence of other additive wide-band sig- 
nals, it becomes interesting to separate these two kinds of sig- 
nals. In this paper we specifically present an iterative method 
for separating helicopter signals from wide-hand interference 
modeled as an autoregressive (AR) process. The suggested al- 
gorithms can also be used for other harmonic signals. Experi- 
mental results of our algorithm using real helicopter signals are 
presented to demonstrate the practical applicability of the 
method. 

I. INTRODUCTION 
ANY signals observed in a variety of applications M can be characterized as periodic or almost periodic. 

A voiced speech signal and the acoustic signal generated 
by a helicopter are examples for such signals. These sig- 
nals are usually characterized in the frequency domain by 
their harmonic spectrum whose fundamental frequency is 
the inverse of the period. In the time domain, the peaks 
of the autocorrelation function of such signal indicate as 
well the period of these signals. 

A basic problem concerning these signals is the esti- 
mation of the period or the fundamental frequency. Many 
methods have been suggested for solving this problem. In 
the speech context these methods are referred to as pitch 
detection, e.g., [1]-[4]. Other methods have been sug- 
gested in the helicopter context, e.g., [ 5 ] ,  [6]. In a gen- 
eral signal processing context, methods were suggested in 
[7] for the parameter estimation problem and in [8] for the 
more general estimation and signal enhancement prob- 
lem. In this paper we consider the problem of estimating 
the periodic signal parameters in the presence of an inter- 
ference. This is an interesting problem since most of the 
previously suggested methods often show unacceptable 
degradation in performance in the presence of an interfer- 
ence characterized as colored noise. A related problem to 
be considered in this noisy case is the estimation of the 
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(b) 

Fig. 1. (a) Typical helicopter signal. (b) Typical jet plane signal 

periodic signal itself-either for enhancing it or for can- 
celing it out. 

The motivation for this problem comes from a real 
problem where a helicopter acoustic signal is observed 
with an acoustic jet plane signal. Both signals may be of 
interest and it is desired to separate them for further pro- 
cessing. Typical examples of the helicopter signal wave- 
form and the jet plane waveform are given in Fig. 1. 

A model-based approach is used in this paper. The pe- 
riodic (or close to periodic) signal is defined up to some 
parameters, one of them is T,  the period; and the others 
describe the deviation from strict periodicity. The wide- 
band signal is modeled as a Gaussian random process, 
with unknown spectrum. To simplify the analysis, we as- 
sume an AR model whose parameters determine the band- 
width and the center frequency of this signal. 

The likelihood of the observed signal given all the 
model parameters can be maximized to produce an esti- 
mate of these parameters. However, this maximization is 
complicated. We suggest an iterative algorithm for max- 
imizing the resulting likelihood function. This algorithm 
is closely related to the algorithms described in [9], and 
can be described as an implementation of the general ex- 
pectation-maximization (EM) algorithm [ 101. 

The paper is organized as follows. Section I1 will be 
devoted to the detailed analysis of the periodic or the al- 
most periodic signal. In Section I11 we present the prob- 
lem of separating almost periodic signals from wide-band 
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signals, and derive an iterative algorithm that accom- 
plishes this separation and estimates the various model 
parameters. We also discuss a second version of the al- 
gorithm to the case in which the almost periodic signal 
has two fundamental frequencies. In Section IV we pre- 
sent experimental results with the suggested algorithms. 
The necessary background, i.e., a short description of the 
EM algorithms is provided in the Appendix. 

11. WAVEFORM AND PARAMETER ESTIMATION OF 
ALMOST PERIODIC SIGNALS 

In this section we investigate methods for waveform 
and parameter estimation of almost periodic signals. At 
this point we do not define exactly what we mean by "al- 
most" periodic; it will be clear in the various cases later 
in the paper. However, we can say in general that an al- 
most periodic signal x ( t )  satisfies 

( 1 )  

for some period T ,  at least along some time window. 
Throughout this section we assume that we observe the 

almost periodic signal x ( t )  with an additive error signal 
e ( t ) ,  i.e., we observey(t) = x ( t )  + e ( t ) .  This error signal 
accommodates for measurements errors, deviations from 
the model, etc. We start by examining the case where x ( t )  
is strictly periodic, and then investigate possible devia- 
tions of x ( t )  from strict periodicity. The strictly periodic 
case is the simplest, but the algorithms derived for it will 
be the basis for the more general cases in which deviations 
for strict periodicity will be allowed. 

x( t )  = x ( t  + T )  

A .  Strictly Periodic Signal 

signal that satisfies the equality 
A strictly periodic signal, x ( t ) ,  whose period is T, is a 

x( t )  = x ( t  + T )  V T  (2)  

which implies that 

x(t)  = x( t  + k T )  k = 0,  + I ,  k2, * * * . ( 3 )  

We define the period waveform a ( t )  as 

(4) 

A different way to describe this signal is as a convolution, 
i.e., 

I"0"' otherwise. O < 
a( t )  = 

x( t )  = a (0 * PO) ( 5 )  

where p ( t )  is an impulse train 

p ( t )  = C 6 ( t  - kT)  (6) 

which leads to a modulated impulse train behavior in the 
frequency domain. 

Let us assume, first, that the period T is given. Con- 
sider the samples of the observed signal at T time units 

apart, i .e.,  { y ( t  + k T ) } .  In order to estimate a sample 
of the period waveform a ( t ) ,  define the vector y ( t )  as 

~ ( 0  = [ y ( t  + KI 73, Y(t + (K, + 1)T), * , Y  

* (t + ( K 2  - l ) T ) , y ( t  + K2T)IT 0 5 t < T 

(7) 

where KI (K2)  is the smallest (largest) k such that t + kT 
is in the observation window. Usually, for symmetry, KI 
= - K 2 .  From ( 3 ) ,  (4), and (7), 

(8) y ( t )  = la(t) + e ( t )  

where 1 = [ l ,  . * , 1 I T  and e ( t )  is defined as 

e ( t )  = [e( t  + K I T ) ,  e ( t  + ( K ,  + 1)T), * * . , 

* e(t + (K2 - l ) T ) ,  e ( t  + K 2 T ) I T  

O r t c T .  (9) 
If we further assume that the signal e ( t )  is white, the vec- 
tors y ( t )  are independent at different time points, Thus, 
we may process each time sample independently. If e ( t )  
is also assumed to be Gaussian, the vector e ( t )  is zero- 
mean Gaussian with covariance matrix a2Z and so the ML 
estimator of a ( t )  is the solution to the least squares prob- 
lem min 11 y ( t )  - l ~ ( t ) I / ~ ,  which is a simple average 

K? 1 
&(t )  = z l T e ( t )  = - c y ( t  + k T )  0 I t < T K k = K I  

(10)  
where K = K2 - K, + 1. 

When the error samples are correlated, with a correla- 
tion matrix R,(t )  = E { e ( t )  e ( t ) T } ,  the ML criterion is 
equivalent to a weighted least squares criterion, i.e.,  min- 
imizing [ y ( t )  - l ~ ( t ) ] ~ R ~ - ~  [ y ( t )  - la(t)], and we get 

&(t)  = [(lTR,I ( t ) l ) J - l  lTR<? ( r ) y ( t )  

K2 

a k  (t) k = KI 

where cyk ( t )  is the kth coefficient of the vector lTReP1 ( t ) .  
The estimate in (1 1) is achieved by processing each time 
sample separately; thus, it is optimal only if the error sig- 
nal samples at different time points are uncorrelated, i.e.,  
E { e ( t ) e ( a ) }  = 0, r # U, 0 5 r ,  U < T.  We note that 
while the estimate of a ( t )  in (10) is independent of the 
exact knowledge of the statistical properties of e ( t ) ,  i .e.,  
of u2 ,  we need to know R,, i.e., the correlation (or the 
spectrum) of e ( t ) ,  in order to obtain the estimate of (1 1). 

The estimate of a ( t )  in (11) can be regarded as a 
weighted average over the samples of the observed signal 
in the various periods. It is interesting to note that we get 
a similar, although slightly different weighted average so- 
lution for the problem of estimating a ( t )  using a model 
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that deviates from the periodic model. Suppose that x ( t )  
satisfies 

The signal x ( t )  will be considered almost periodic if w k  ( t )  
= 1 ,  and it is a smooth function. One immediately ob- 
serves that when the coefficients of e ( t )  are uncorrelated, 
the estimate of the periodic waveform a ( t )  is given by 

K2 

Y ( t  + kT) 
(13) = k = K I  

K2 

k = K I  c 4 (0 

Again, in order to use this estimator one has to know the 
"modulating" waveform w k  ( t ) .  The simultaneous esti- 
mation of w k  ( t )  (with some assumptions) and the periodic 
waveform a ( t ) ,  is given in Appendix A. 

So far no a priori knowledge and no assumptions about 
the periodic waveform a ( t )  have been used. The solutions 
of (lo),  ( l l ) ,  and (13) were obtained independently at 
each time point as the unconstrained solutions of the ap- 
propriate optimization problems. We may have some de- 
terministic knowledge about a ( t ) ,  e.g., that it is smooth 
and its derivative cannot exceed a certain value. How- 
ever, usually it is hard to incorporate these constraints. 
We will thus try to express our knowledge by assuming a 
priori statistical properties for a ( t ) .  

Since the signal is periodic with period T ,  we may con- 
sider its Fourier series coefficients, which are given by 

27r 
A ( @ / )  = - a(t)e-jw" dt a! = 1 -. (14) J T o  s' T 
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We assume that, a priori, these Fourier coefficients are 
zero-mean Gaussian complex random variables, with vari- 
ance, 

E{A(w,)A*(w/) l  = S u ( W / ) .  (15) 

We also assume that the Fourier series coefficient, at dif- 
ferent frequencies, are uncorrelated. The periodic wave- 
form is related to the Fourier coefficients by the inverse 
formula 

1 
a( t )  = - c A(U/)$"". J T I  

We note that the presentation of (15), together with the 
assumptions on A (ak), is Rice's presentation of periodic 
Gaussian signals, see [ l l ]  and [12]. 

For estimating the Fourier coefficients, consider the 
Fourier series of the successive blocks of size T of the 
observed signal, i.e., 

. P T  

where Ek(wl)  is the Fourier series coefficient of the kth 
block of the error signal. Using a vector notation, define 

Y ( W / >  = [ Y K , ( W / ) 9  * - * 9 Y K z  (a/ 11 
and define similarly E (a,), so 

Y ( w , )  = 1 ? 4 ( W / )  + E ( w , ) .  (18) 
For simplicity, assume again that the signal e ( t )  is white, 
i.e., the components of E ( w / )  are uncorrelated with co- 
variance (T~Z, as are the various vectors E ( - )  at different 
frequencies. In this case the signal's Fourier series coef- 
ficients, A ( a l ) ,  can be estimated separately at each fre- 
quency. The solution to the MAP problem in the Gaussian 
case which is the optimal linear estimation is given by 

(19) 
Note that the solution in (19) depends on the knowledge 
of the spectrum Su(w) .  

Estimating the Period: For each value of the period T 
we can find an estimate of the period waveform 6( t ;  T )  
depending on our a priori knowledge and assumptions 
about e ( t ) ,  using one of the methods described above. We 
can then reconstruct an estimate of the periodic signal x ( t )  
and the error signal e  ̂(t; T )  = y ( t )  - P ( t ;  T )  based on the 
estimate of the period waveform ci(t; T ) .  The period can 
then be estimated by minimizing the resulting goal func- 
tion with respect to T. 

Following the discussion above, when it is assumed that 
e ( t )  is white and Gaussian the period will be estimated by 
minimizing 

A(a,) = S ~ ( u ~ ) l T [ l S ~ ( ~ ~ ) l T  + oiZ1-I - Y ( w / ) .  

( y ( t )  - i ( t ;  T ) ) 2  dt 

= -!- 5, j '  ( y ( t  + kT)  - d ( t ;  T ) ) 2 d t  (20) 
KTk=K o 

where 3 is the observation window, and where & ( t ;  T )  is 
given by (10). Recall that (10) is an average of the ob- 
served signal over samples which are T time apart. Sub- 
stituting this estimate in (20) we can immediately observe 
the relation between minimizing (20) and searching for 
the peaks of the autocorrelation function of y ( t ) .  

If e (t) is not assumed to be white, but we know its cor- 
relation function R, ( t ,  s) the criterion for estimating Twill 
be 

1 

- R , ( t ,  s) ( y ( s )  - P(r; T ) )  dt ds (21) 

where now we have to use the estimate of 6( t ;  T )  given 

If we assume that each period of x ( t )  is modulated by 
wk(t )  as in (12), we have to include these weights when 
we generate P(t; T )  from the period waveform &(t; T )  es- 
timated by ( 1  3). 

by ( 1  1 ) .  
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For the case where we have statistical a priori knowl- 
edge on a ( t )  in the form presented by (14) and (15), a 
term that represents the a priori knowledge, i.e., 

log det S,(uk) + A ( u k ;  T)*S,(uk)A(uk; T )  (22) 

where * denotes the complex conjugate, must be added to 
(20). Tis estimated by minimizing the sum of both terms. 

The approach presented so far can be regarded as a gen- 
eralization of the ML pitch estimation method suggested 
in 121. More importantly, it sets the framework for the 
results presented below which consider deviations from 
strict periodicity. 

B. Deviations from the Strictly Periodic Model 
In reality, signals which are strictly periodic in the en- 

tire observation window are, unfortunately, rare. For ex- 
ample, the fundamental frequency of a voiced speech sig- 
nal (the pitch) can change in time. Similarly, the acoustic 
helicopter signal is not strictly periodic due to Doppler 
shift effects. Thus our model and processing procedures 
must accommodate some deviations from strict periodic- 
ity. Note that above, and in Appendix A, we have already 
discussed one deviation from a strict periodicity by allow- 
ing a different gain wk for each period. However, the more 
interesting deviations from the periodic model are those 
where the “period” T is not constant. 

In this section we consider two such models. In the first 
we assume that the period or the fundamental frequency 
is changing slowly, so that it may be considered constant 
in a short enough interval. If the changes in the funda- 
mental frequency are the result of a Doppler shift this as- 
sumption corresponds to a constant radial velocity in that 
interval. In the second model we assume that the period 
time T can change according to some parameter; thus, if 
the changes in the fundamental frequency are the result of 
a Doppler shift, this corresponds to assuming that the ra- 
dial velocity is varying in time according to some param- 
eters. 

1) Slowly Vurying Period: We assume that along a 
window of several time periods assumption is approxi- 
mately valid, i.e., the signal part x ( t )  satisfies 

(23) 
where K is a small enough number. 

Given the period T ,  in a small enough window around 
time t ,  the estimate of the periodic waveform a ( t ) ,  say, 
according to the least squares goal function, is similar to 
(10) and is given by 

WA 

~ ( t )  = x ( t  + k T )  k = k l ,  * * . , _+K 

(24) 2K + 1 -K 

Thus, the “local” period can be estimated by minimizing 

l K  
6 ( t ;  T )  = ~ y ( t  + k T ) .  

t + A  

L(T) = - ( y ( t )  - ci(t; T ) ) 2  dt. (25) 
2A t - A  

We note that if the period is constant in time, using as 
large as possible A will improve the performance. If the 

integral in (23) is performed over the entire observation 
window we get the goal function of (20).  However, since 
the period is slowly changing in time, a smaller A ,  usually 
on the order of T, is recommended. 

Estimating a new period T, at each time point t ,  may 
be too expensive and unnecessary. We can use the same 
period estimate T along some window, and estimate the 
periodic waveform along that window according. to (24). 
The period estimate will be updated by searching (25) at 
the rate we expect it to change. 

The estimate of the periodic signal by (24) can be mo- 
tivated by observing that (24) represents a convolution be- 
tween the observed y ( [ )  signal and 

1 K 

p ( t )  = - K  c- 2K + 1 6 ( t  - kT). (26) 

This is a filter whose frequency response has peaks at fre- 
quencies 1 / T  apart and each peak has a bandwidth of 
1 / ( 2 K  + 1 )  T .  This filter is known as “comb filter.” The 
shape of this filter can be modified slightly (e.g., can have 
a better sidelobe behavior) by using nonequal weights ak 
in (26) .  The frequency response of such a filter with ar- 
bitrary ak’s is given in Fig. 2. It is clear that this filter is 
aimed to pass only the periodic components, of period T ,  
of the observed signal. 

The goal of the suggested algorithm is to tune the comb 
filter to the observed signal. Adaptive comb filters have 
been suggested, e.g., [ 131, [4]. We have suggested here 
an explicit filter where the period estimate comes from the 
ML procedure derived above (which is similar to [ 2 ] ) .  We 
also note that a different approach, based on the polynom- 
ial structure of the periodic signal with a finite number of 
harmonics has been suggested in [8]. Our approach is 
more direct, and as will be seen below, it can be used in 
the more complicated problem of separating the almost 
periodic signal and the wide-band interference signal. 

2) Parameterically Varying Period: The direct ap- 
proach for adapting the comb filter can be extended to the 
case where the period variation is controlled by some pa- 
rameter. Recall that the waveform estimate of the periodic 
signal was possible since we could associate the signal 
x ( t )  at each time point to a set of signal values at other 
time points x ( t  4- kT) which, due to periodicity, have 
equal values. This situation can be generalized as follows. 
Suppose that the desired signal satisfies 

When the signal is strictly periodic we have, of course, 
t k ( f )  = t + kT. However, the more general setting of (27) 
enables us to consider nonperiodic signals. 

Suppose the time delay functions tk ( t )  depend on some 
parameters. One parameter will be T, the length or the 
period of the basic waveform a ( t )  to be estimated. Other 
parameters define the deviation from the periodic assump- 
tions. For example, suppose that due to Doppler effects, 
the original time axis of the periodic signal is compressed 
or stretched linearly in time at a rate a.  This situation 
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0 7T 
Fig. 2 .  Frequency response of a comb filter 

occurs when there is a radial acceleration and thus the 
radial velocity changes as at. In this case the original pe- 
riodic signal x ( t )  is modified and becomes 

x(dop)( t )  = x([l + atlt). (28) 
We notice that in this case t k ( t )  = [ I  + a(t  + kT)] ( 2  + 
kT), i.e.,  determined by two parameters a and T. 

For each value of the parameters we can find the best 
estimate of the basic waveform a ( t )  by using one of the 
goal functions and the appropriate processing procedures 
as presented in the previous section. We have, of course, 
to use the appropriate time index. Thus, using the least 
squares goal function, the estimate of a ( t )  which is anal- 
ogous to (lo), is given by 

I K: 

&(to(t))  = kFK, Y ( t k ( t ) )  0 5 t 5 7- (29) 

where tk(t) = [l + a (t + kT)](t + k T ) .  As before, we 
fix a( to( t ) )  to be zero for t < 0 or t > T. 

The unknown parameters that define the period and its 
variations can be estimated, as before, by substituting the 
waveform estimate (which is a function of these parame- 
ters) into the desired goal function for these parameters, 
and searching for the optimal parameter values. Thus, if 
we denote the solution to (29) by B ( e  ; T, a ) ,  and we use 
again the least squares criterion, the suggested procedure 
for estimating a and Tis  given by 

- c B(t,(t); T, a ) ) 2  dt. (30) 

The bounds of the integral in (30) as well as the choice 
of K 1  and K2 in (29) (i.e., the number of “periods” we 
average on), can be determined by our a priori assump- 
tion about the size of the window for which we can as- 
sume that a and T are constants. 

Substituting (29) into (30) leads to an expression con- 
taining quadratic terms of the observed signal ~ ( t ) .  Thus, 
as expected, the goal function of (30) is strongly related 
to the autocorrelation of y ( t ) .  

111. PARAMETER ESTIMATION AND SEPARATION OF 

ALMOST PERIODIC SIGNAL AND AR PROCESS 
The main problem considered in this paper is the sep- 

aration of a wide-band signal and a periodic (or almost 
periodic) signal. As noted above, the practical problem 
that motivated this research comes from a situation where 
we observe a helicopter acoustic signal together with a jet 
plane signal. In the sequel, we assume that the observed 
signal y ( t )  can be written as 

Y O )  = h(t)  + j ( 4  (3 1) 

where the signal h ( t ) ,  the helicopter signal, is composed 
of a signal x ( t )  and a signal e ( t ) ,  and x ( t )  is either strictly 
periodic or deviate from periodicity according to the 
models discussed above. To simplify the exposition, 
throughout this section it is further assumed that e ( t )  is 
Gaussian and white. The signal j ( t ) ,  which represents the 
wide-band interference, is assumed to be a zero-mean sta- 
tionary random process, independent of h ( t ) ,  whose spec- 
trum depends on some unknown parameters. A possible 
model for j ( t )  is a Gaussian AR process. In this case the 
power spectrum of j ( t )  is given by 

G 
(32) S,(4 = 

11 - r = l  5 a l e - J ~ ~ 1 2  

where a, are the AR parameters and p is the model order. 
A low model order is usually sufficient to capture the 
spectral shape o f j  ( t ) .  The spectral parameters o f j  ( t )  will 
be denoted d.  

The problem considered here is basically different, and 
may be substantially more complicated, than the problem 
of enhancement and parameter estimation of harmonic 
signal in a white noise. One reason for that lies in the fact 
that the AR process may, itself, show a narrow-band be- 
havior when the poles are closed to the unit circle. In- 
deed, the previously proposed algorithms which work well 
in the white noise case will not perform well in our case. 
Nevertheless, the problem can still be solved and it is not 
ill-posed, since the noise waveform, even when its band 
becomes narrow, does not have the deterministic har- 
monic structure assumed for the (almost) periodic signal, 
and so these two signals can be separated. The algorithm 
derived in this section provides such a solution. 

The likelihood of the observed data with respect to all 
the unknown parameters is derived in Appendix B. Max- 
imizing this likelihood directly is complicated. Now, we 
know that if we observe only the signal h(t) ,  which con- 
tains the almost periodic signal and the white error signal, 
we can find the ML estimate of the parameters based on 
the techniques of Section 11. Also, if we observe only the 
signal j ( t ) ,  the AR process, we can estimate its parame- 
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ters easily by solving the appropriate normal equations. 
We are now going to use these facts to derive an iterative 
algorithm based on the EM method, for estimating all pa- 
rameters jointly. 

We recall that for deriving algorithms based on the EM 
method we consider the observations as "incomplete" 
with respect to a more convenient set of data, called the 
"complete data." Each iteration has two steps, the E and 
the M steps. Denoting the complete data z ,  the observed 
data y ,  and the current value of the parameters e'"', the E 
step calculates 

may have to use interpolation when t + kT is not an in- 
teger. When the signal deviates from strict periodicity, we 
use instead formulas analogous to (30) and (29), where 
h ( t )  replaces y ( t ) ,  and summation over t replaces the in- 
tegration. In any case, the statistics of h ( t )  needed for 
estimating its parameters contain linear terms of h ( t )  and 
quadratic terms of the form h ( r )  h (a) .  

The term I1 of (35), which depends only on the spectral 
parameters of j ( t ) ,  can be easily maximized for the case 
whenj(t) is an AR process. It is well known that in this 
case maximizing the likelihood is (approximately) equiv- 
alent to minimizing the prediction error of the AR process 

(33) i.e., minimizing Q(0, 0"') = E{log p ( z ) (  y, 0"')) 
and the M step calculates 

0'"') = arg max Q(0, 0'")). 
e (34) 

For exponential families of distributions, the E step es- 
timates the sufficient statistics of the complete data by a 
conditional expectation, given the observations and the 
previous value of the parameters. The M step maximizes 
the likelihood of the complete data using the estimated 
statistics of the complete data instead of the true one which 
is unobserved. In Appendix C we discuss the EM method 
further. The iterations (33) and (34) are the generic form 
of the method. An explicit algorithm for our problem is 
derived below. 

A .  Derivation of the Iterative Procedure 

The solution of the minimization above is obtained by 
solving the normal equations 

P 
R,(k) - c a,R,(i - k )  = 0 k = 1 ,  * * , p (39) 

I =  I 

where 
. N - k - l  

and N is the number of data points in the analysis window. 
The estimate of G is given by 

" 
G = R, - akRk. (40) Following the discussion above, there is natural choice 

of complete data-the signals h (1) and j ( t )  separated. In- k =  1 

deed, if h ( t )  andj(t) were observed separately, estimating 
the unknown parameters would have been simple. Being 
more specific, suppose the complete data is given. Since 
h ( t )  and j ( t )  are statistically independent, the log-likeli- 
hood of the complete data is the sum of the log-likelihood 
of h ( t )  andj( t ) ,  i.e., 

log P (h  j (4) = log P (h  ( t ) )  + log P ( j (0) .  (35) 
I w w 

Now the first term depends only on the parameters of the 
(almost) periodic signal, say T and a ( t ) .  The second term 
depends only on the parameters 6 of j ( t ) .  Thus each term 
can be maximized separately with respect to the appro- 
priate variables. 

The maximization of term I above was discussed in the 
previous section. For example, when the signal is strictly 
periodic and e ( t )  is Gaussian and white we minimize 

f = arg min L ( T )  = arg min c ( h ( t )  - ci(t; T))' (36) 
T 7 - r  

where ci(t; T )  is a periodic signal for which each period 
waveform is given by 

Kz 

ci(t; T )  = zkFK, h(t  + k T )  O s t < T .  (37) 

Note that the observed signal is assumed to be discrete 
time; however, the period T may not be an integer and we 

We notice that the statistics of j ( t )  needed for estimating 
its parameters are quadratic functions of j ( t ) .  

Equations (36), (37), and (39), (40) give us the esti- 
mate of the parameters had we observed the complete 
data. Unfortunately, we only observe y ( t ) .  However, us- 
ing the EM idea, we can estimate in each step the neces- 
sary statistics of the complete data, given the observations 
and the previous value of the parameters. 

Consider for simplicity the strict periodic model for the 
periodic part of h ( t ) .  Given a current value of its param- 
eters, T'"' and a ( t ;  T'"'), the periodic components x ( t )  is 
completely defined, and will be denoted x ( t ;  T'"', a'"'). 
The E step of the algorithm will estimate the following 
statistics of h ( t ) :  

~ { h  ( t ) (  y ( t ) ;  T'"', a ( t ;  T'"') 6'")) = x ( t ;  T'"', a'")) 

+ E { e ( t ) (  y ( t ) ;  T'"', a (?;  T'")), c p ' " ' } .  (41) 

Similarly, 

E { h ( t ) h ( a ) (  y ( t ) ;  T'"', a ( t ;  T'")), 6'")) = x ( t ;  T'"), a'"') 

+ x(a ;  T'"'), a'"') 

+ E{e(t) l  y ( t ) ;  T'"', a ( t ;  T'")), ~ ' " ) } x ( a ;  T'"', a'"') 

+ x ( t ;  T'"', a ' " ' ) E { e ( a ) (  y ( t ) ;  T'"', a ( t ;  T'"'), 4''7)} 

+ E { e ( t ) e ( a ) (  y ( t ) ;  T'"', a ( t ;  T'"'), 6'"'). (42) 
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The necessary statistics of j ( t )  to be estimated in the E 
step are 

E { j ( t ) )  y ( t ) ;  T'"', a(t;  T'"'), p} 

E {  j ( t ) j (a) I  y ( t ) ;  T'"', a( t ;  T'"'), d'"'}. 

(43) 

(44) 

and 

We observe that given x ( t :  T'"', a'")), we can subtract 
it from y ( t )  to generate a signal z ( t ) .  Given the parame- 
ters, the conditional expectation given y ( t )  is equivalent 
to the conditional expectation given z ( t ) .  We also observe 
that given the parameters, z ( t )  is the sum of two zero- 
mean stochastic Gaussian processes, e ( t )  and j ( t ) ,  whose 
second moments are given. Thus we can easily find the 
conditional expectation of e ( t )  and j ( t )  and also the con- 
ditional expectations of their quadratic terms. 

Specifically, let a: be the current variance of e ( t )  and 
let R, (6'"') be the current N x N covariance matrix o f j  ( t ) .  
Then the vectors b = [C(O), * , i ( N  - 1)I 'andj  = 
t j ( O ) ,  * , j ( N  - 1)I'where Z ( t )  = E { e ( t ) )  y ( t ) ;  T'"'), 
a( t ;  T'"', 4'")) andj ( t )  = E { j ( t ) l  y ( t ) ;  T'"), a ( t ;  T'"'), 
4'"'} are given by 

(45) 

(46) 

b = [R,($'"') + a ;z] - ' a ;z .  z 

j^ = [R,(+'"') + a;Z]-'R,(+("') . z 

, z ( N  - 1)3? where z = [ z ( O ) ,  

whose t ,  s element is 
E { ( e ( t )  - P(O)(e(s)  - &(SI)} and E { ( j ( t )  - j ( t ) ) ( j ( s )  
- f ( s ) ) }  are given by 

- A  

The N X N matrices tt' 

2 = a:z - a3[R,(4'")) + a:z]-b:z 

= a:[R,(p) + a:Z]- 'R,(rp) (47) 

= R,(f#J'"))[R,(r#d"') + a : l ] - ' a ; .  (48) 

A 

17 = R,(+(")) - R,(+'"') [I?,(+'"') + aSZ]-' R,(+(")) 

The components of the estimated matrices above together 
with the components of the estimated vectors b a n d j  and 
the current periodic signal estimate x ( t ;  T'"', a ("') provide 
the conditional expectations of the necessary quadratic 
terms. 

The conditional expectations above can be simplified if 
we can assume that the observation window length N is 
large enough, so we can work in the frequency domain, 
assuming that the Fourier coefficients of the signals are 
uncorrelated. The Fourier coefficients of, say, z ( t )  are 
given by 

(49) 
1 N - l  

Z(W) = - C z(t)e-jW'. f i  t = O  

The conditional expectations of E(w)  and J ( w ) ,  the 
Fourier coefficient of e ( t )  andj( t ) ,  are 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41. NO. I ,  JANUARY 1993 

where we recognize these expressions as the (noncausal) 
Wiener filter operations. For the necessary quadratic terms 
we have toA calculate the conditional expectations 
E{ IIE<w, - E(w)1 l2 )E{  I I J ( 4  - J (w)1I2L given by 

= E {  llJ(w> - J(4112}. (52) 
We now have all the conditional expectations needed 

for updating the parameters in the M step. The appropriate 
conditional expectations are substituted in the appropriate 
place in (36), (37), and (39), (40), instead of the unob- 
served statistics. These equations are then used to provide 
a new value for the parameters. The resulting algorithm 
is summarized and described explicitly below: 

Start the algorithm by initial guess of the period h ( t )  
and the spectral parameters of j ( t ) .  A plausible ini- 
tial guess for T is the first peak of the autocorrela- 
tion of the observed signal. An averaging procedure 
like (10) can provide an initial estimate of the period 
waveform, with that T. Subtracting this waveform 
from the observed signal and solving the least 
squares prediction error equations on the residual 
will provide an initial estimate for the AR coeffi- 
cients of j ( t ) .  
Iterate as follows. At each iteration n an estimate of 
the parameters that determine the (almost) periodic 
signal (e.g., T'"), CY("), e ) ,  an estimate of the pe- 
riodic component x'"'(t) = x ( t ;  T'"', a("),  . * e , 
a'")) and an estimate of the spectral parameters 
6'") of j ( t )  are all given. Thus, the E step will be 

a) Subtract the periodic component, i.e., generate a 
signal z ( t )  

z ( t )  = y ( t )  - X ( " ) ( t ) .  (53) 

b) Perform a Wiener filtering operation on z ( t )  to 
generate an estimate of j ( t ) ,  e ( t ) ,  and their auto- 
correlation. Specifically, use the procedures de- 
scribed in (45)-(48), or (50)-(52). 

c) Add the estimate of e ( t )  to x ( " ) ( t )  to get an esti- 
mate of h( t ) ,  and use the autocorrelation of e ( t )  
with x'"'(t) to get the estimate of the autocorre- 
lation of h ( t ) .  

Note that an estimate of the wide-band signal j ( t )  is 

The M step will be: 
provided as a by-produce of this E step. 

a) Substitute the E step estimate of h ( t )  in, e.g., (10) 
to get an estimate of the periodic waveform a (t) .  

b) Substitute the E step autocorrelation estimate of 
h(t)  in, e .g . ,  (36) to get the updated estimate of 
T,  and the other parameters that determine the (al- 
most) periodic signal behavior. J - .  ' ' 
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Fig. 3 .  The iterative algorithm for separation and parameter estimation 

c) Use the E step estimate of the correlation of j ( t )  

3) 

in the normal equations to get an updated estimate 
of the AR parameters of j ( t ) .  

End up, as a result, with new values for the (almost) 
periodic signal parameters, T ( " + ' ) ,  CY("+", * - , 
the spectral parameters, 4 (" + ' I ,  of j ( t ) ,  and most 
importantly a new estimate of the periodic compo- 
nent x(" + ') ( t )  which together with the estimate of 
e ( t )  from the E step provides an estimate of the sig- 
nal h(t) .  

This algorithm for separation and parameter estimation 
is summarized in Fig. 3. 

B. Modification: Two Fundamental Frequencies 
As mentioned above, the problem considered in this pa- 

per was motivated by the real situation where a helicopter 
acoustic signal is observed with additive wide-band jet 
plane signal. However, in many cases, the almost peri- 
odic helicopter signal contains two fundamental frequen- 
cies as a result of unsynchronized main and tail rotors. In 
this case the helicopter signal may be modeled as 

(54) h(t)  = xI ( t )  + x2 (t) + e(r) 

where xi(t) is an almost periodic signal with parameters 
Ti, . . 

For simplicity, assume again that e ( t )  is Gaussian and 
white. In this case if we observe h ( t ) ,  the estimate of the 
parameters associated with the two different fundamental 
frequencies is achieved by 

and period waveform ai ( t) .  

min 

* * 9 a' (0) - Xz(t; T2, * * 9 a2(t))l2. ( 5 5 )  

This minimization can be complicated and may require 
a multidimensional search, even when h ( t )  is given. Thus 
we suggest the following iterative altemate minimization 
algorithm to solve (55): At each iteration a current esti- 
mate of the parameters of xl(t)  is given. This estimate 
define a current value x j ")( t)  for x1 ( t ) .  Subtract this esti- 

mate from h(t)  to get hp'(t) = h( t )  - x r ' ( t ) .  Then, solve 
the least squares problem 

min s (h  ('"(t) - x2(t; T2, , a2( t ) ) )2 .  (56) 

The solution of this problem is the current estimate of the 
parameters of x2(t), and can be used to define its current 
value xp'(t). Subtract this estimate from h ( t )  to get h p )  
= h( t )  - xp'( t ) ,  and then solve the least square problem 

r2, ' ' ' , U Z ( f )  J 

min j (h?)( t )  - X I  ( t ;  T ~ ,  . - * , a l  ( t > > ) 2 .  (57) 

The solution of this problem provides the updated esti- 
mate of the parameters of x,(t) and defines its updated 
value x(" + " ( t ) .  The iterations continue, reducing in each 
step the least square goal function of (55 )  until conver- 
gence. 

This alternate minimization algorithm is easy to imple- 
ment. Each of the least squares problems of (56) ,  (57) is 
analogous to minimizing (20) which requires a search only 
for the parameters of a signal with one period. 

When the helicopter signal is observed with additive 
wide-band signal, h( t )  is not available. However, we are 
using the EM algorithm. Given the complete data, i .e.,  
given h ( t ) ,  we have to use the above alternate minimiza- 
tion algorithm. This will make the M step more compli- 
cated, but it still uses quadratic statistics of h( t )  in each 
iteration of the alternative minimization. Thus, the E step 
derived above, can be used without modification in this 
more general case. 

TI, ' ' . ,U l ( I '  3 

IV. EXPERIMENTAL RESULTS 
This study has been motivated by the real problem of 

separating the acoustic helicopter signal and the additive 
wide-band jet plane signal. Thus, it was important to test 
our algorithm using real helicopter signals and to find out 
that, indeed, it provides a valid answer to the studied 
problem. 

Two helicopter test signals have been examined. The 
first, was a CH-47 helicopter signal whose rotors are syn- 
chronized and so it has a single fundamental frequency. 
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(a) (b) 

Fig. 4 .  CH-47: (a) Sample signal, (b) sample spectrum. 

The second, was a UH-60 helicopter, in which two fun- 
damental frequencies exist. Sample signals for both heli- 
copters and the magnitude of their Fourier transform are 
shown in Figs. 4 ,  5. 

As a first simple experiment the period of an observed 
CH-47 signal, assuming that it is periodic with a small 
error signal. We have calculated the least squares goal 
function suggested in (20) for various observation win- 
dows. The result is shown in Fig. 6 .  As one can see the 
specific signal we have used has a stable period, of ap- 
proximately 92 ms, (fundamental frequency of 10.9 Hz). 
However, this does not mean that it is strictly periodic 
since the period waveform was varying along the test sig- 
nal observations, due to fading (gain change) and a small 
Doppler shift. The estimate of the periodic signal itself is 
shown in Fig. 7. As we can see, most of the periodic 
components have been extracted successfully. 

We have performed a similar experiment using the 
UH-60 signal. Here we had to consider the fact that this 
signal has two fundamental frequencies. Thus, we need 
the modification suggested for this case and iterated, can- 

I l l  I 
75 80 85 90 95 100 105 

Fig. 6. CH-47: The goal function (square error) as a function of T .  Dif- 
ferent observation window lengths. 

celing each periodic signal and calculating the goal func- 
tions L (T , )  and L ( T2) for each period estimate. These goal 
functions are shown in Fig. 8 for a few successive itera- 
tions. Again we clearly see in this example the period es- 
timates. (The "uncertainty" in estimating T2 reflected by 
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Fig. 7.  Extracted CH-47 signal 
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Fig. 8. UH-60: The goal function (square error) as a function of periods 

(a) TI and (b) Tz: several iterations. 

the flat shape of the goal function is not so severe if we 
normalize it by the higher fundamental frequency asso- 
ciated with this period.) 

Next we have added a wide-band noise to the CH-47 
helicopter, by generating sample functions of an AR pro- 
cess with various SNR. The AR signal level was con- 
trolled by the input variance G. The AR model order was 
2. The parameters were chosen to provide a wide-band 
spectrum. We have implemented the algorithm described 
in Fig. 3 .  A total of five EM iterations were performed, 
where most of the improvement in estimation and extrac- 
tion has been achieved in the first three iterations. The 
mean-square error of the estimated helicopter signal nor- 
malized by the energy of the true helicopter signal, which 
is the noise-to-signal ratio of the algorithm output, is 
shown as a function of the input SNR, in Fig. 9. The 
separated helicopter signal is shown, compared to the true 
helicopter signal in Fig. 10, for 0-dB SNR. 

output NSR (dB) 

24 1 

input-SNR (dB) 

Fig. 9 .  CH-47 signal with an AR signal: Mean-square extraction error 
(NSR) as a function of input SNR. 

003 

'- 

0 0 2  

001 

(msec) 

15 I 

(b) 

Fig. I I .  UH-60 with a jet plane interference: Goal function (square error) 
as a function of periods (a) TI and (b) Tz .  

The most general experiment we performed was for the 
case of UH-60 helicopter in the presence of a jet plane 
signal. Not only did we have two fundamental frequen- 
cies, but the helicopter had a nonconstant radial velocity 
which led to nonstable periods. Since the periods were 
changing slowly, we used the methods described in (24), 
(25). A was on the order of 10 periods. The behavior of 
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the other hand, when the waveform a ( t )  is given, the gain 
of the kth period can be estimated by 

(k + l )T  s a( t )  Y ( t )  dt 
kT 

(k + I)T (59) 
wk = skT a 2 ( t )  dt 

where, as before, (59) minimizes the least squares crite- 
rion 

j ( Y ( t )  - Wk * 4 t N 2  dt. 

Equation (13) and (59) can define an iterative algorithm: 
We start with a guess of wk, say all 1’s. At each step we 
use the previous gain to find new a ( t )  using (13) and we 
substitute the new waveforms in (59) to get wk. We may 
restrict the gains to lie in an interval 1 - CY I wk I 1 + 
CY by modifying the output of (59) as 

(b) 

Fig. 12. UH-60 with real jet plane signal: (a) Observed and (b) extracted 
UH-60 signal. 

if the period is not given One can find the best 
{wk ( T ) }  and a ( t ;  T )  for each T and, as before, search for 
the minimum of, say, a least square goal function 

the period goal functions L(Tl) and L(T2) are shown in 
Fig. 1 1. The reconstructed, helicopter signal is shown in 
Fig. 12. 

The experiments reported here are by no mean exhaus- 
tive. However, we may conclude, especially from the last 
example, performed using real signals, that the suggested 
algorithms are, indeed, capable to enhance the helicopter 
signals and to separate periodic and wide-band signals in 
a variety of cases. Additional experiments with these al- 
gorithms and a more comprehensive study of their per- 
formance is necessary and is left for further research. 

APPENDIX A 
WEIGHTED PERIODIC SIGNAL 

In this Appendix we present a method for estimating 
the parameters and the waveform of a signal that satisfies 

x ( t )  = Wk x ( t  + k T )  ( 5 8 )  

i.e., each of its periods has a different gain. Unlike the 
discussion in Section 11, the method suggested here also 
estimates the gains wk. 

Suppose first that the period time Tis given. If the gains 
(wk} are known, the estimate of a ( t )  is given by (13). On 

L ( T )  = ( Y ( l )  - F Wk(T)a(t; dt. (61) 

APPENDIX B 
THE LIKELIHOOD OF THE OBSERVATIONS IN SECTION 

I11 
We have claimed that the direct ML estimate of both 

the parameters of the periodic signal and the parameters 
of the wide-band signal is complicated. This was the mo- 
tivation for using the EM algorithm. To substantiate this 
claim we derive here an expression for the likelihood of 
the observations. 

For simplicity we will assume that the observation win- 
dow is long enough so we can work in the frequency do- 
main, assuming that the different Fourier coefficients are 
uncorrelated. Thus our observations in the frequency do- 
main are 

(62) Y(U/> = H(w, )  + J(W/) 
where 

2 a  2a  
CO/ = 1 - = 1 -. 

3 N (63) 
1 N - l  

y(wl) = ~ C y(t)e-’w” f i  r = o  

J ( w l )  is a zero-mean complex Gaussian random vari- 
able with variance S j ( w l ;  9). H ( w l )  is also Gaussian; its 
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mean is X ( q ;  T,  * . * , a ( t ) )  where X ( w , ;  T,  . . - , a ( t ) )  
is the Fourier transform of the periodic component x ( t ;  T,  
. . . , a ( t ) ) ,  and its variance is 0; due to the white error 
signal e ( t ) .  Thus Y ( w l )  is a Gaussian random variable with 
mean X ( w l ;  T ,  * - * , a ( t ) )  and variance CJ; + Sj(u, ) .  
Since all the frequency components are uncorrelated, the 
likelihood is proportional to 

For ML estimation we have to maximize this expres- 
sion with respect to 4 and T,  * * , a ( t ) .  Maximizing this 
expression can be complicated, and anyway, no explicit 
analytical solution is available. 

APPENDIX C 
THE EM ALGORITHM FOR MAXIMUM LIKELIHOOD 

ESTIMATION 
The EM algorithm for maximum likelihood estimation 

is briefly summarized in this Appendix. 
We denote by Y the data vector with the associated 

probability densityfy( y; 8) indexed by the parameter vec- 
tor 8 where the possible parameter values are con!ained 
in a set 8. Given an observed y, the ML estimate 8 M L  is 
the value of 8 that maximizes the log-likelihood, that is 

8 M L  = arg max log fy( y; 8) (65) 
0 ~ e  

Suppose that the data vector Y can be viewed as being 
incomplete, and we can specify some “complete” data X 
related to Y by 

H ( X )  = Y (66) 

where H (  e )  is a noninvertible (many to one) transforma- 
tion. 

The EM algorithm is directed at finding the solution to 
(65); however, it does so by making an essential use of 
the complete data specification. The algorithm is basically 
an iterative method. It starts with an initial guess e‘’), and 
8 ‘’ + ’) is defined inductively by 

8‘“ + I )  = arg max E {log fx_Q; e) / y ;  - e‘“)} (67) sf e 

wherefx(x; e) is the probability density of X ,  and E { * /y; 
e(‘)} denotes the conditional expectation given y, com- 
puted using the parameter value e(’). The intuitive idea is 
that we would like to choose 8 that maximizes log f x ( x ;  
e), the log-likelihood of the complete data. However, 
since logfx(x; e) is not available to us (because the com- 
plete data is not available), we maximize instead its ex- 

pectation, given the observed data y .  Since we used the 
current estimate Cl(’) rather than the actual value of 8 
which is unknown, the conditional expectation is not ex- 
act. Thus the algorithm iterates, using each new parame- 
ter estimate to improve the conditional expectation on the 
next iteration cycle (the E step) and then uses this condi- 
tional estimate to improve the next parameter estimate (the 
M step). 

The EM algorithm was presented in its general form by 
Dempster et al.’ in [lo]. The algorithm was suggested 
before, for specific applications, by several authors, e .g . ,  
[15]-[17]. The rate of convergence of the algorithm is 
linear [lo], depending on the fraction of the covariance 
of the complete data that can be predicted using the ob- 
served data. If that fraction is small, the rate of conver- 
gence tends to be slow, in which case one could use stan- 
dard numerical methods to accelerate the algorithm. 

We note that the EM algorithm is not uniquely defined. 
The transformation H (  a )  relating X to Y can be any non- 
invertible transformation. Obviously, there are many pos- 
sible “complete” data specifications that will generate the 
observed data. Thus, the EM algorithm can be imple- 
mented in many possible ways. The way H (  .) is specified 
(i.e., the choice of the “complete” data) may critically 
affect the complexity and the rate of convergence of the 
algorithm. 
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